(2x)^2+x^2=400

Simple and best practice solution for (2x)^2+x^2=400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x)^2+x^2=400 equation:



(2x)^2+x^2=400
We move all terms to the left:
(2x)^2+x^2-(400)=0
We add all the numbers together, and all the variables
3x^2-400=0
a = 3; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·3·(-400)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*3}=\frac{0-40\sqrt{3}}{6} =-\frac{40\sqrt{3}}{6} =-\frac{20\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*3}=\frac{0+40\sqrt{3}}{6} =\frac{40\sqrt{3}}{6} =\frac{20\sqrt{3}}{3} $

See similar equations:

| 4x+12=(2x+3)=6 | | 2*3^(x^2+1)+3^(x^2-2)=2*5^(x^2)+5^(x^2-1) | | -26x=-24+8x | | 5a+5=7a+7 | | 3x+2=1/9 | | 3x-12x=24+9x | | Q=1-0.5p | | 5*x+1+x=1+3x+4x-2 | | 5-5*x=3-2*x+6 | | x4=712 | | h+h=1 | | 6x+19=-38-2x | | 18x^2-36x-270=0 | | 3x2+20=29 | | 3,2+8x=9x | | √(4-x)+√(x+1)=x^2-3x+3 | | 4x-5=×+1 | | 2×+6=3x+9-3 | | -2=2(h-20) | | 3.5(t-16)=7 | | -2=-s+8 | | -3x2=-7 | | v+0.6=-4.4 | | k+6.7=0.7 | | 3(2m-2)+5=6(m+1) | | b/3=3.4 | | h+5.4=8.9 | | 15x-9=11x-1 | | 6b−3=2b−0.2 | | (2x+9)=(2x–9) | | 2y-6.7=y+12 | | 12x-1=4x+9 |

Equations solver categories